PROJECT LIFE CYCLE AND OBJECTIVES

19 Slides739.00 KB

PROJECT LIFE CYCLE AND OBJECTIVES

PROJECT MANAGEMENT LIFECYCLE 1. Initiation 2. Planning 3. Executing 4. Closure

INITIATION OF A PROJECT 1. Create an idea 2. Identify the project vision and objectives 3. Define the complete scope of the project 4. List all of the critical project deliverables 5. State the customers and project stakeholders 6. List the key roles and their responsibilities 7. Create an organizational structure for the project 8. Document the overall implementation plan 9. List any risks, issues and assumptions 10. Appoint the project team 11. Set up the project office 12. Perform a phase review

PLANNING OF A PROJECT 1. Create a Project Plan 2. Create a Resource Plan 3. Create a Financial Plan 4. Create a Quality Plan 5. Create a Communication Plan 6. Create a Risk Plan 7. Contact the Supplies

DIFFERENT TYPES OF PROJECTS AND ITS LIFE CYCLE (CONSTRUCTION PROJECT)

Different types of projects and its life cycle (pharmaceuticals project)

DIFFERENT TYPES OF PROJECTS AND ITS LIFE CYCLE (PHARMACEUTICALS PROJECT) Pharmaceuticals project Discovery and Screening—includes basic and applied research to identify candidates for preclinical testing. Preclinical Development—includes laboratory and animal testing to determine safety and efficacy as well as preparation and filing of an Investigational New Drug (IND) application. Registration(s) Workup—includes Clinical Phase I, II, and III tests as well as preparation and filing of a New Drug Application (NDA). Postsubmission Activity—includes additional work as required to support Food and Drug Administration review of the NDA.

DIFFERENT TYPES OF PROJECTS AND ITS LIFE CYCLE (SOFTWARE PROJECT)

DIFFERENT TYPES OF PROJECTS AND ITS LIFE CYCLE (SOFTWARE PROJECT) Proof-of-concept cycle—capture business requirements, define goals for proof-of-concept, produce conceptual system design, design and construct the proof-of-concept, produce acceptance test plans, conduct risk analysis and make recommendations. First build cycle—derive system requirements, define goals for first build, produce logical system design, design and construct the first build, produce system test plans, evaluate the first build and make recommendations. Second build cycle—derive subsystem requirements, define goals for second build, produce physical design, construct the second build, produce system test plans, evaluate the second build and make recommendations. Final cycle—complete unit requirements, final design, construct final build, perform unit, subsystem, system, and acceptance tests.

GOALS OF THE PROJECT Goal is the desired result of an activity, which may be achieved within the limits of a certain time interval.

Needs Objective necessity Wishes Ideas Aims (results) What? How? Aims (actions) What? Who? With whom? When? How much is it? Project execution Fig. 1.5. Determination of project goals With what?

GOLD RULE OF PROJECT MANAGEMENT Goals must have a clear meaning. The results obtained in achieving a goal must be measurable, and the established constraints and requirements, must be feasible, that is, goals must be within the field of acceptable solutions of the project

DETERMINING A GOAL Determining the goal is regarded as a creative process, can be divided into a number of certain procedures: determining the goal indicators, determining possible goals of the project, describing the goals of the project Determining the goal indicators can be carried out on the basis of: requirements of the project, the goals of the enterprise in which the project is being executed, the study of the enterprise environment

For determining the project goals, both individual and group methods are used. Since a search for the goal is a creative process, there are no strictly regulated approaches. Determining feasible project goals must be clearly stated and described. The description of the project goals must, in essence, become a documented agreement of the main sides about the project goals.

In addition, the following elements must be stated in a clear and unambiguously interpreted way: The result of the project, which is described as a desired state of the system depending on the type and kind of the project; Completion deadlines, which are described as a time interval within which it is preferable to bring the project to a completion. As a rule, it is so far a statement of intention, but, in a number of cases it can be binding. Costs, in the first description these may be budget limits, but in a number of cases, a fixed upper limit of the costs. The way of the project goal changing. The hierarchy of interdependent goals. In the description of the project goals, it may be pointed out as an addition which hierarchy must be accepted if one of the project goals can no longer be achieved.

Decomposition of the goal (the construction of the goals tree) Level 1. The formulation of the main goal. At this upper level, the goal must describe the final product, for obtaining which the investigated system is set up (the project is carried out) in a most general, qualitative and convenient for decomposition form. Level 2. The decomposition of the main goal in accordance with the products or the results (useful and harmful) of carrying out the project. The introduction of this level is necessary for multipurpose systems, on whose output appears various products of their functioning. In order to determine the decomposition basis at this level, it is necessary to build a classification of final products. At the first level of the classification, the outputs are detailed into useful and harmful (“waste”). At the second level of the classifier, both useful final products and waste can be detailed by the objects of activity, means of activity, subjects of activity and organizational structures.

Level 3. The formulation of subgoals, which are determined by the requirements of the basic goal-setting systems. At this level, subgoals are formulated which are connected with the needs and interests of all the project stakeholders in connection with creation of the project final products. Level 4. Decomposition by the production life cycle components of the system (project) final product. To start with, the system inputs and outputs must be identified. The investigated system inputs at this level are the complete list of goals derived at above (the third level of the tree of goals). The basis of decomposition by the investigated system inputs is the most general model of public production of any final product, which includes the following temporal sequence of functions: finding out the demand for the product; realization of the given product (service) production process; product consumption.

Level 5. In the process of obtaining the final product, the organizational system (project) comes forward as a functioning structure whose elements and relations ensure the realization of the life cycle of the final product creation. It gives rise to the need for the application at this decomposition level of the “composition” model, that is, decomposition of functions disclosed at the fourth level of the tree of goals by the composition of the system elements. The microstructure of any functioning social-economic system includes: the subject of labor (who works?); the object of labor (at what does one work, and from what does one produce?); means of labor (with what does one work?); relations between the system elements, that is, the processes of interaction in the production of the final products, and the organizational structures (how the project fulfillment processes are organized, how the work is carried out?).

Level 6. At the sixth level, the decomposition is carried out on the basis of the management cycle model, which, in conformity with any organizational management system, includes the following main stages: forecasting; planning; organization; controlling; analysis of problem situations. Level 7. Decomposition on the basis of the powers delegation model: performance; coperformance; coordination; endorsement.

Back to top button