Elliptic curve cryptography ECC is an asymmetric cryptosystem based
10 Slides39.50 KB
Elliptic curve cryptography ECC is an asymmetric cryptosystem based on the elliptic curve discrete log problem. The ECDLP arises in Abelian groups defined on elliptic
-R y2 x3 – ax b P Q R. Q P R Defining addition (and doubling) defines multiplication by a scalar. The ECDLP is the inverse operation to multiplication by a scalar; if K kP, given K and P, find k.
The ECDLP is intractable; for a given field size, it is vastly harder to find k from kP and P than it is to find kP from k and P. k is thus used as the private key; kP is used as the public. The ECDLP is widely believed to be resistant to Number Field Sieve attacks. The best known attack is Pollard’s Rho— whose difficulty grows more rapidly with the field size than do NFS methods.
Equivalent key sizes Symmetri c 80 128 192 256 ECC DH/DSA/RSA 163 283 409 571 1024 3072 7680 15360
Four primitives/protocols — — — — ECDSA ECDH ECIES ECMQV
ECDSA Elliptic Curve Digital Signature Algorithm ECDSA provides sign and verify operations; it is analogous to DSA.
ECDH Elliptic Curve Diffie-Hellman ECDH is analogous to conventional Diffie-Hellman; p(qG) q(pG); qG, pG are public values; p and q are private.
ECIES Elliptic Curve Integrated Encryption Scheme. ECIES is analogous to public key encryption. The initiator performs an ECDH-type transform with the respondent’s static key pair; the generated key is then used for encryption/signing.
ECMQV Elliptic Curve Menezes-Qu-Vanstone. MQV is intended as replacement for Signed DH. ECMQV is endorsed in the NSA’s Suite B. Both parties must use their private key in an AVF to generate the shared key; this functions as an implicit signature, proving possession of the private key.
Uses in MIKEY ECDH drops in for DH. ECDSA drops in for DSA.* ECIES and 1-pass MQV drop in for public key encryption methods.* 2-pass MQV could drop in for signed DH; this is not in the current draft.* * These methods require EC certs.