CMSC491? Programming Embedded Systems Introduction June 7, 2003
31 Slides149.50 KB
CMSC491? Programming Embedded Systems Introduction June 7, 2003 Gary Burt, 2003 1
What is an embedded system? “An embedded system is an application that contains at least one programmable computer (typically in the form of a microcontroller, a microprocessor or digital signal processor chip) and which is used by individuals who are, in the main, unaware that the system is computer-based.” Michael J. Pont, Embedded C June 7, 2003 Gary Burt, 2003 2
What is a microcontroller? “A microcontroller is a computer-on-a-chip, or, if you prefer, a single-chip computer. Micro suggests that the device is small, and controller tells you the device might be used to control objects, processes, or events. Another term to describe a microcontroller is embedded controller, because the microcontroller and its support circuits are often built into, or embedded in, the devices they control.” The Microcontroller Idea Book, Jan Axelson June 7, 2003 Gary Burt, 2003 3
June 7, 2003 Gary Burt, 2003 4
June 7, 2003 Gary Burt, 2003 5
Perversities of Embedded Systems “One very unfortunate aspect of embedded systems is that the terminology surrounding them is not very consistent. For every word, there are four or five subtly different meanings. You will just have to live with this problem.” An Embedded Software Primer, David E. Simon June 7, 2003 Gary Burt, 2003 6
Size of market “What is often surprising is that embedded processors account for virtually 100% of worldwide microprocessor production! For every microprocessor produced for use in a desktop computer, more than 100 are produced for use embedded systems .the number of embedded microprocessors found in the average middle-class household in North America was estimated to be between 40 and 50.” Fundamentals of Embedded Software, Where C and Assembly Meet, Daniel W. Lewis June 7, 2003 Gary Burt, 2003 7
Most important concern “The two most important concerns when building an embedded system are cost and cost. Of the two, cost is the most important!” unknown June 7, 2003 Gary Burt, 2003 8
Example “Most large organizations that build embedded systems have fully equipped labs with hardware simulators and software analysis tools for producing inexpensive circuit boards and complex software to run on them. Clearly, the cost of the equipment can easily be spread over millions of units that the company produces. Likewise, the cost of developing the software is amortized .For example, if a company can eliminate one RAM chip by using a complex memory compression scheme, there is a valid business case for hiring a large software team to implement this added complexity.” Dr. Dobbs Journal, Feb 2004, “Multitasking on the Cheap” June 7, 2003 Gary Burt, 2003 9
What is the biggest problem? According to Jack Ganssle: – “80% of all embedded systems are delivered late” – “Bugs are the #1 cause of late projects.” – “New code generally has 50 to 100 bugs per 1000 lines .” – “ Traditional debugging is the slowest way to find bugs.” June 7, 2003 Gary Burt, 2003 10
What is the biggest problem? - II – “Writing drivers for complex peripherals is more art than science. Most traditional programming techniques fail when confronted with ISRs and performance issues.” June 7, 2003 Gary Burt, 2003 11
Solution The only way to develop quality embedded software is to know how to develop quality software! June 7, 2003 Gary Burt, 2003 12
Examples of embedded systems Mobile phone Braking systems Traction control Engine management units Steer-by-wire (includes fly-by-wire) Cruise control VCR Auto-pilots Flight control systems Radar systems Missile guidance systems June 7, 2003 Gary Burt, 2003 13
What is different? Embedded programming is going to do more bit manipulation. Uses IO ports. Uses polling, DMA and interrupts. Is more hardware-centric. More concerned with performance. More concerned with cost. More concerned with memory use. More concerned with reliability. Use ICEs, oscilloscopes, and logic analyzers. June 7, 2003 Gary Burt, 2003 14
What is different? - II May require real time programming. May be more concerned with the operations of the operating system in order to improve performance. More involved with assembly language programming. More involved with the actual hardware design. June 7, 2003 Gary Burt, 2003 15
What is different? - III “Although a software engineer who writes only applications may spend an entire career and learn nothing about hardware, an embedded-systems software engineer usually runs up against hardware early on. The embedded-systems software engineer must often understand the hardware early on. The embeddedsystems software engineer must often understand the hardware in order to write correct software; must install the software on the hardware; must sometimes figure out whether a problem is caused by a software bug or by something wrong in the hardware; may even be responsible for reading the hardware schematic diagram and suggesting corrections.” An Embedded Software Primer, David E. Simon June 7, 2003 Gary Burt, 2003 16
Important Decisions Processor Programming Language Operating System June 7, 2003 Gary Burt, 2003 17
Processor Desktop processors (x86) cost more than 100 per unit. 8051 devices start at less than 1.00. 8-bit devices do not have very much “muscle” or memory. Objective to have just enough processing power at lowest cost. June 7, 2003 Gary Burt, 2003 18
Language Interpreters are too slow! BASIC and Java are out! Complex languages are too slow! C and Java are out. Speed of execution and limited use of memory are in. C and assembly are in! “Which programming language you use depends on things like desired execution speed, program length, and convenience, as well as what’s available in your price range.” The Microcontroller Idea book, Jan Axel June 7, 2003 Gary Burt, 2003 19
Assembly VS C Assembly is the fastest, however, it is difficult to find or train assembly experts. Then if a new processor is required, you have to start over! C is mid-level, lots of good C programmers available, C compilers are available. C is on 8-, 16-, 32-, and 64-bits processors. June 7, 2003 Gary Burt, 2003 20
Operating System Most applications (especially 8-bit systems) consist of only one program, and therefore do not need a “traditional” operating system. ROM monitors replace the operating system. Today’s more complex systems require more complex control and therefore need an operating system of some kind. June 7, 2003 Gary Burt, 2003 21
Real-time systems Subclass of embedded systems. “’real-time system’ is a computer system that has timing constraints. In other words, a real-time system is partly specified in terms of its ability to make certain calculations or decisions in a timely manner. These important calculations are said to have deadlines for completion. And, for all practical purposes, a missed deadline is just as bad as a wrong answer.” Programming Embedded Systems in C and C , Michael Barr A missed deadline is considered a system failure! June 7, 2003 Gary Burt, 2003 22
Our Decisions In this course, we will be looking at: – 8051 (this is really of family of over 400 models.) This is an old 8-bit chip with a ROM monitor, but still extremely popular. We will look at assembly language and C. We will be using AS51 and SDCC C compiler. – 8086. This is a capable 16-bit chip and will we will use C and assembly language. We will look into developing a control program. Uses MASM and Visual C . – AMD 5x86. This is a modern 32-bit chip that runs Linux. It uses SanDisk 16MB chip as a “hard disk”. Linux uses mostly C, using gcc, and NASM. June 7, 2003 Gary Burt, 2003 23
Develop embedded system Build the hardware – breadboard prototype – hardware designer Develop software – done on another platform cross-compilers emulators development tools, flash programmer June 7, 2003 Gary Burt, 2003 24
Cross-platform development June 7, 2003 Gary Burt, 2003 25
Need for “Muscle” processor June 7, 2003 Gary Burt, 2003 26
Prerequisites CMSC421 – – – – – – – context switch counting semaphore critical section deadlock interrupt interrupt service routine intertask communication/synchronization June 7, 2003 Gary Burt, 2003 27
Prerequisites - II – – – – – – – kernel memory-mapped I/O multiprocessing multitasking mutex physical address preemptive June 7, 2003 Gary Burt, 2003 28
Prerequisites - III – – – – polling race condition scheduler thread June 7, 2003 Gary Burt, 2003 29
Prerequisite - IV Additional information comes from the following courses: – – – – – – CMSC201 CMSC211 CMSC311 CMSC313 (replacement for 211/311) CMSC341 CMSC411 June 7, 2003 Gary Burt, 2003 30
References An Embedded Software Primer, David E. Simon, 1999, AddisonWesley Embedded C, Michael J. Pont, 2002, Addison-Wesley Fundamentals of Embedded Software, Where C and Assembly Meet, Daniel W. Lewis, 2002, Prentice Hall Programming Embedded Systems in C and C , Michael Barr, 1999, O’Reilly & Associates, Inc The Microcontroller Idea Book, Jan Axelson, 1994, Lakeview Research www.Ganssle.com Dr. Dobb’s Journal June 7, 2003 Gary Burt, 2003 31